Synergistic activity of everolimus and 5‐aza‐2′‐deoxycytidine in medullary thyroid carcinoma cell lines

نویسندگان

  • Giovanni Vitale
  • Alessandra Dicitore
  • Daniele Pepe
  • Davide Gentilini
  • Elisa S. Grassi
  • Maria O. Borghi
  • Giulia Gelmini
  • Maria C. Cantone
  • Germano Gaudenzi
  • Gabriella Misso
  • Anna M. Di Blasio
  • Leo J. Hofland
  • Michele Caraglia
  • Luca Persani
چکیده

Medullary thyroid cancer (MTC) is a tumor highly resistant to chemo- and radiotherapy. Drug resistance can be induced by epigenetic changes such as aberrant DNA methylation. To overcome drug resistance, we explored a promising approach based on the use of 5-aza-2'-deoxycytidine (AZA), a demethylating agent, in combination with the mTOR inhibitor everolimus in MTC cells (MZ-CRC-1 and TT). This combined treatment showed a strong synergistic antiproliferative activity through the induction of apoptosis. The effect of everolimus and/or AZA on genome-wide expression profiling was evaluated by Illumina BeadChip in MZ-CRC-1 cells. An innovative bioinformatic pipeline identified four potential molecular pathways implicated in the synergy between AZA and everolimus: PI3K-Akt signaling, the neurotrophin pathway, ECM/receptor interaction, and focal adhesion. Among these, the neurotrophin signaling pathway was most directly involved in apoptosis, through the overexpression of NGFR and Bax genes. The increased expression of genes involved in the NGFR-MAPK10-TP53-Bax/Bcl2 pathway during incubation with AZA plus everolimus was validated by western blotting in MZ-CRC-1 cells. Interestingly, addition of a neutralizing anti-NGFR antibody inhibited the synergistic cytotoxic activity between AZA and everolimus. These results open a new therapeutic scenario for MTC and potentially other neuroendocrine tumors, where therapy with mTOR inhibitors is currently approved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of 5-aza-2ˈ-deoxycytidine and Valproic Acid on Epigenetic-modifying DNMT1 Gene Expression, Apoptosis Induction and Cell Viability in Hepatocellular Carcinoma WCH-17 cell line

Background: DNA molecule of the eukaryotic cells is found in the form of a nucleoprotein complex named chromatin. Two epigenetic modifications are critical for transcriptional control of genes, including acetylation and DNA methylation. Hypermethylation of tumor suppressor genes is catalyzed by various DNA methyltransferase enzymes (DNMTs), including DNMT1, DNMT2, and DNMT3. The most well chara...

متن کامل

Effect of 5-aza-2′-deoxycytidine on p16INK4a, p14ARF, p15INK4b Genes Expression, Cell Viability, and Apoptosis in PLC/PRF5 and MIA Paca-2 Cell Lines

Background: Mammalian cell division is regulated by a complex includes cyclin-dependent kinases (Cdks) and cyclins, Cdk/cyclin complex. The activity of the complex is regulated by Cdk inhibitors (CKIs) compressing CDK4 (INK4) and CDK-interacting protein/kinase inhibitory protein (CIP/KIP) family. Hypermethylation of CKIs has been reported in various cancers. DNA methyltransferase inhibitors (DN...

متن کامل

Sorafenib and Mek inhibition is synergistic in medullary thyroid carcinoma in vitro.

Clinical trials using kinase inhibitors have demonstrated transient partial responses and disease control in patients with progressive medullary thyroid cancer (MTC). The goal of this study was to identify potential combinatorial strategies to improve on these results using sorafenib, a multikinase inhibitor with activity in MTC, as a base compound to explore signaling that might predict synerg...

متن کامل

Everolimus is an active agent in medullary thyroid cancer: a clinical and in vitro study

Everolimus, an mTOR inhibitor, which has been demonstrated to induce anti-tumour effects in different types of neuroendocrine tumours, has never been evaluated in patients with medullary thyroid cancer (MTC). The aim of this study was to evaluate the in vitro and in vivo effects of everolimus in combination with octreotide in MTC. Two patients with progressive metastatic MTC and high calcitonin...

متن کامل

PI3K/Akt/mTOR and CDK4 combined inhibition enhanced apoptosis of thyroid cancer cell lines

Introduction Thyroid cancer is a malignant disease with poor prognosis. The PI3K/Akt/mTOR and Cyclin-Dependent Kinase 4 (CDK4) pathways are vital regulators of tumor cell proliferation and survival. Therefore the present study was designed to use dual inhibition of such pathways to kill thyroid cancer cells. Methods and materials The effects of each inhibitors on human ATC and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017